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Abstract
1.	 Animal acoustic signals are widely used in diverse research areas due to the rela-

tive ease with which sounds can be registered across a wide range of taxonomic 
groups and research settings. However, bioacoustics research can quickly gener-
ate large data sets, which might prove challenging to analyse promptly. Although 
many tools are available for the automated detection of sounds, choosing the 
right approach can be difficult and only a few tools provide a framework for eval-
uating detection performance.

2.	 Here, we present ohun, an R package intended to facilitate automated sound 
event detection. ohun provides functions to diagnose and optimize detection rou-
tines, compare performance among different detection approaches and evaluate 
the accuracy in inferring the temporal location of events.

3.	 The package uses reference annotations containing the time position of target 
sounds in a training data set to evaluate detection routine performance using 
common signal detection theory indices. This can be done both with routine 
outputs imported from other software and detections run within the package. 
The package also provides functions to organize acoustic data sets in a format 
amenable to detection analyses. In addition, ohun includes energy-based and 
template-based detection methods, two commonly used automatic approaches 
in bioacoustics research.

4.	 We show how ohun can be used to automatically detect vocal signals with case 
studies of adult male zebra finch Taenopygia gutata songs and Spix's disc-winged 
bat Thyroptera tricolor ultrasonic social calls. We also include examples of how to 
evaluate the detection performance of ohun and external software. Finally, we 
provide some general suggestions to improve detection performance.
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1  |  INTRODUC TION

Animal acoustic signals are widely used to address a variety of ques-
tions in highly diverse areas, ranging from neurobiology (Burgdorf 
et al., 2011; Schöneich, 2020) to taxonomy (Gwee et al., 2019; Köhler 
et al., 2017), community ecology (Tiwari & Diwakar, 2022) and evolu-
tionary biology (Medina-García et al., 2015; Odom et al., 2021). The 
profuse usage of animal sounds in research relates to the fact that 
they can be easily collected using non-invasive methods. In addition, 
animal sounds can be obtained in various natural and unnatural set-
tings, with equipment that has become increasingly inexpensive and 
broadly accessible (Blumstein et al., 2011; Sugai et al., 2019). Online 
repositories have also facilitated the study of these communication 
signals at larger taxonomic and geographic scales. However, adopt-
ing bioacoustics approaches may also imply large amounts of data 
(i.e lots of recordings), which can be challenging to analyse manually 
(Gibb et al., 2019). As a result, a growing number of computational 
tools for automatically detected animal sounds is increasingly avail-
able (reviewed by Stowell, 2022), reflecting the need for better and 
more efficient automated approaches (Gibb et al., 2019).

Most available tools for the automatic detection of acoustic events 
are free software, accessible to a wider range of users and scientific 
questions. However, this diversity of automated detection tools also 
posits a challenge, as it can be difficult to navigate (Stowell,  2022). 
In this regard, using standard approaches for evaluating the perfor-
mance of automatic detection tools might prove helpful in inform-
ing researchers' decisions about which method better fits a given 
question and study system (Knight et al., 2017). The performance of 
automated sound event detection routines has typically been evalu-
ated using standard indices from signal detection theory (Balantic & 
Donovan,  2020; Knight et al.,  2017). In its basic form, performance 
is assessed by comparing the output of a detection routine against 
a ‘gold-standard’ reference in which all the target sounds have been 
annotated (hereafter called ‘reference annotation’). This comparison 
facilitates quantifying the number of sounds detected correctly (true 
positives), wrongly (false positives) and missed (false negatives), as well 
as additional metrics derived from these indices (e.g. recall, precision).

The fact that sound events are not always structured as single 
acoustic units and that they are embedded within a continuous 
string of sound in some cases creates the need for additional in-
formation to fully diagnose the temporal precision of the detection 
performance. This is particularly relevant if identifying the precise 
time position of sounds is needed, which is often required when the 
main goal is measuring the acoustic structure of sounds (Araya-Salas 
& Smith-Vidaurre, 2017). In this line, several challenges can be en-
countered; for instance, the same signal can be detected as several 
separated sounds, the inferred time position can be offset from the 
target signal position, or several sounds can be detected as one 

single signal. Therefore, tools containing metrics that account for 
these additional performance dimensions are valuable for properly 
diagnosing automatic sound event detection.

Here, we present the new R package ohun. This package is in-
tended to facilitate the automatic detection of sound events, providing 
functions to diagnose particular aspects of acoustic detection routines 
to simplify their optimization. The package uses reference annotations 
containing the time position of target sounds that, along with the cor-
responding sound files, serve as a training data set to evaluate the per-
formance of detection routines. This can be done with routine outputs 
imported from other software and detection routines run within the 
ohun package. The package also provides a set of functions to explore 
acoustic data sets and organize them in an amenable format for detec-
tion analyses. In addition, it offers implementations of two automatic 
detection methods commonly used in bioacoustics analysis: energy-
based detection and template-based detection (Aide et al.,  2013; 
Charif et al.,  2010; Hafner & Katz,  2015; Mellinger & Clark,  2000). 
Here, we explain how to explore and format acoustic data sets and 
how sound event detection routines can be evaluated. In addition, we 
showcase the package usage with study cases on male Zebra-finch 
songs Taenopygia gutata and Spix's disc-winged bat calls Thyroptera tri-
color, which correspond to different recording settings (i.e lab and flight 
cages) and signal types (i.e sonic mating sounds and ultrasonic social 
calls). See the package vignette (https://marce​10.github.io/ohun/artic​
les/ohun.html), the package website (https://marce​10.github.io/ohun) 
and the R package documentation in CRAN (https://CRAN.R-proje​
ct.org/packa​ge=ohun) for additional details and examples.

2  |  FORMAT TING ACOUSTIC DATA SETS

The format and size of the acoustic data to be analysed needs to be 
standardized to avoid downstream errors and to inform expectations 
for computational time performance. Several functions in ohun can fa-
cilitate double-checking the format of acoustic datasets prior to auto-
matic detection. The function feature_acoustic_data prints a summary 
of the duration, size and format of all the recordings in a folder. Here, 
we explore the acoustic data set of zebra finch's songs (Supporting 
Information):

# path to files directory
path_zebra_finch <- "path_to_zebra_finch_files"
feature_acoustic_data(path = path_zebra_finch)
## Features of the acoustic data set in './data/raw/taeniopygia':
## * 72 sound files
## * 1 file format(s) (.wav (72))
## * 1 sampling rate(s) (44.1 kHz (72))
## * 1 bit depth(s) (16 bits (72))

K E Y W O R D S
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## * 1 number of channels (1 channel(s) (72))
## * File duration range: 0.2-21.76 s (mean: 6.07 s)
## * File size range: 0.02-1.92 MB (mean: 0.54 MB)
## (detailed information by sound file can be obtained with 'war-
bleR::info_sound_files()')z1

In this case, all recordings have the same format (.wav files, 
44.1 kHz sampling rate, 16-bit resolution, and a single channel). We 
can also check the files' duration and size. Format information is im-
portant as some tuning parameters of detection routines can behave 
differently depending on file format (e.g. time window size can be 
affected by sampling rate) or simply because some software might 
only work on specific sound file formats. In addition, long sound files 
could be difficult to analyse on some computers and might have to 
be split into shorter clips. In the latter case, the function split_acous-
tic_data can be used to produce those clips:

split_info <− split_acoustic_data(path = path_zebra_finch, # path to 
recordings
 sgmt.dur =&#x2009;5) # duration of clips
head(split_info)

original.sound.files sound.files start end

Ag13_43421.27975590_11_17_7_46_15.wav Ag13_43421.27975590_11_17_7_46_15-1.wav 0 5.000

Ag13_43421.27975590_11_17_7_46_15.wav Ag13_43421.27975590_11_17_7_46_15-2.wav 5 10.000

Ag13_43421.27975590_11_17_7_46_15.wav Ag13_43421.27975590_11_17_7_46_15-3.wav 10 15.000

Ag13_43421.27975590_11_17_7_46_15.wav Ag13_43421.27975590_11_17_7_46_15-4.wav 15 20.000

Ag13_43421.27975590_11_17_7_46_15.wav Ag13_43421.27975590_11_17_7_46_15-5.wav 20 21.761

Blk109Brn_43559.32349131_4_4_8_59_9.wav Blk109Brn_43559.32349131_4_4_8_59_9-1.wav 0 5.000

The output shows the time segments in the original sound files to 
which the clips belong. If an annotation table is supplied (argument 
‘X'), the function will adjust the annotations, so they refer to the po-
sition of the sounds in the clips. This can be helpful when reference 
tables have been annotated on the original long sound files.

Annotations can also be explored using the function feature_ref-
erence, which returns the mean and range of signal duration and gap 
duration (e.g. time intervals between selections), bottom and top 
frequency, and the number of annotations by sound file. If the path 
to the sound files is supplied, then the duty cycle (i.e the fraction of 
a sound file corresponding to target sounds) and peak amplitude (i.e 
the highest amplitude in a detection) are also returned:

# read reference annotations
manual_ref_tae <- read.csv(file.path(path_zebra_finch, "manual_selec-
tions_Taeniopygia.csv"))
# explore annotations
feature_reference(
 reference = manual_ref_tae, # data frame with reference annotations
 path = path_zebra_finch # path to recordings
 )

## min mean max

## sel.duration 15.54 103.30 319.41

## gap.duration 80.19 352.26 3024.23

## annotations 2.00 32.83 66.00

## duty.cycle 0.09 0.29 0.61

## peak.amplitude 43.28 65.19 88.69

## bottom.freq 0.50 0.50 0.50

## top.freq 10.00 10.00 10.00

3  |  DIAGNOSING DETEC TION 
PERFORMANCE

The ohun package uses signal detection theory indices to evaluate de-
tection performance. Signal detection theory deals with the process 
of recovering signals (i.e. target sounds) from background noise—not 
necessarily acoustic noise—and it is widely used for optimizing this 
decision-making process in the presence of uncertainty (Hossin & 
Sulaiman,  2015). During a detection routine, the detected events 
can be classified into four classes: true positives (TPs, detections that 

overlap with reference events), false positives (FPs, detections that do 
not overlap with reference events) and false negatives (FNs, reference 
events that do not overlap with any detection). True negavites can-
not be easily defined in the context of sound event detection, as noise 
cannot always be partitioned into discrete units. Hence, the package 
makes use of TPs, FPs and FNs to calculate three additional indices that 
can further assist with evaluating the performance of a detection rou-
tine and are widely used in sound event detection (Knight et al., 2017): 
recall (i.e the proportion of target sounds that were correctly de-
tected), precision (i.e proportion of correct detections relative to total 
detections) and F score (combined recall and precision as the harmonic 
mean of these two, which provides a single value for evaluating perfor-
mance, a.k.a. F1 score, F-measure or Dice similarity coefficient). Note 
that in ohun overlap is measured as 50% temporal intersection over 
union but it be modified by users.

The package also offers three additional metrics related to the ac-
curacy of the time location of a sound event detection: ‘splits, ‘merges’ 
and ‘overlap’. ‘Splits’ refers to the number of redundant detections, 
i.e. those detections overlapping reference sounds that also overlap 
with other detections. ‘Merges’ is the number of detections that over-
lap with more than one reference sound, and ‘overlap’ quantifies the 
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mean overlap between detections and reference sounds (1 means 
complete overlap). These three indices are relevant for instances in 
which the temporal location of events has to be accurately deter-
mined. ‘Splits’ and ‘merges’ also enable users to infer whether target 
signals are being detected as discrete units. This can be particularly 
helpful for recordings with a high duty cycle. A perfect routine should 
present no split or merged detections and an overlap equals to 1.

A perfect detection should also lack any false positives or neg-
atives, resulting in both recall and precision equal to 1. However, 
perfect detection cannot always be achieved. Therefore, some com-
promise between detecting most target sounds plus some noise and 
excluding noise but missing target sounds might be warranted. These 
indices provide a useful framework for diagnosing and optimizing 
the performance of a detection routine. Researchers can identify 
an appropriate balance between these two extremes by the relative 
costs of missing sounds and mistaking noise for target sounds in the 
context of their specific study goals.

ohun offers tools to evaluate the performance of sound event 
detection methods based on the indices described above. To accom-
plish this, annotations derived from a detection routine are compared 
against a reference annotation table containing the time position of 
all target sounds in the sound files. For instance, the following code 
evaluates a routine run in Raven Pro 1.6 (Charif et al., 2010) using the 
“band limited energy detector” option (minimum frequency: 0.8 kHz; 
maximum frequency: 22 kHz; minimum duration: 0.03968 s; maximum 
duration: 0.54989 s; minimum separation: 0.02268 s; values obtained 
through manual optimization) on a subset of the zebra finch recordings 
described below (example data included in the Supporting Information):

# reading data
raven_detec <- read.csv("combined_raven_detection.csv") 
# checking data structure

head(raven_detec)
diag_raven <- diagnose_detection(
 reference = manual_ref_tae, # data frame with annotations
 detection = raven_detec, # detection data frame to be diagnosed
 by = "tuning_parameters" # categorical column name indicating 
detections from same run
 )

The diagnose_detection function make use of the maximum bi-
partite matching algorithm (Csardi & Nepusz, 2006) in conjunction 
with the push-relabel algorithm (Goldberg & Tarjan, 1988) to optimize 
the assignment of detections to target sounds. This algorithm aims 
to maximize the matching between detected and reference events, 
ensuring that each reference sound is exclusively associated with a 
single detection (Lostanlen et al., 2019). Our implementation weights 
the matching process with the amount of overlap. Thus, detections 
with higher overlap to reference events are given higher priority. The 
‘by’ argument in the provided code enables users to specify a column 
indicating which detections (i.e rows) belong to the same run.

By default the function computes indices across all sound files 
in the data set. However, the function also allows detailing those 
indices separately for each sound file (argument ‘by.sound.file’) The 
following code shows the first ten files detailed by the column ‘tun-
ing_parameters’, which contains the combined detection parameter 
values used in Raven:

diag_raven <- diagnose_detection(
reference = manual_ref_tae, # data frame with reference 
annotations
detection = raven_detec, # detection data frame to be 
diagnosed
by = "tuning_parameters", # categorical column name indicating 
detections from same run

sound.files selec start end
bottom.
freq top.freq tuning.parameters

Ag13_43421.27975590_1
1_17_7_46_15.wav

1 0.3715 0.423744897 0.8 10 band: 1–10 kHz; sep: 0.005 s

Ag13_43421.27975590_1
1_17_7_46_15.wav

2 1.0913 1.17837483 0.8 10 band: 1–10 kHz; sep: 0.005 s

Ag13_43421.27975590_1
1_17_7_46_15.wav

3 3.2218 3.26243492 0.8 10 band: 1–10 kHz; sep: 0.005 s

Ag13_43421.27975590_1
1_17_7_46_15.wav

4 3.6107 3.668749887 0.8 10 band: 1–10 kHz; sep: 0.005 s

Ag13_43421.27975590_1
1_17_7_46_15.wav

5 5.1084 5.172254875 0.8 10 band: 1–10 kHz; sep: 0.005 s

Ag13_43421.27975590_1
1_17_7_46_15.wav

6 6.5596 6.681504762 0.8 10 band: 1–10 kHz; sep: 0.005 s

tuning_parameters detections true.positives false.positives false.negatives splits merges overlap recall precision

band: 1–10 kHz; sep: 0.005 s 574 448 126 143 0 0 0.832 0.758 0.780

band: 1–10 kHz; sep: 0.02322 s 155 30 125 561 0 0 0.743 0.051 0.194

band: 1–15 kHz; sep: 0.02322 s 632 375 257 216 0 0 0.833 0.635 0.593

band: 1–22 kHz; sep: 0.02322.txt s 1020 423 597 168 0 0 0.833 0.716 0.415
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by.sound.file = TRUE # for detailing indices by sound file
)

head(diag_raven, 10)

uning_parameters sound.files detections
true.
positives

false.
positives

false.
negatives splits merges overlap recall precision

band: 1–10 kHz; sep: 0.005 s Ag13_43421.27975590_11_17_7_46_15.wav 40 35 5 0 0 0 0.856 1.000 0.875

band: 1–10 kHz; sep: 0.005 s BRN7_43435.27985312_12_1_7_46_25.wav 34 21 13 30 0 0 0.747 0.412 0.618

band: 1–10 kHz; sep: 0.005 s Blk109Brn_43559.32349131_4_4_8_59_9.wav 30 27 3 7 0 0 0.852 0.794 0.900

band: 1–10 kHz; sep: 0.005 s DB118_43568.33139566_4_13_9_12_19.wav 18 18 0 1 0 0 0.808 0.947 1.000

band: 1–10 kHz; sep: 0.005 s DB15HP_43450.29217192_12_16_8_6_57.wav 23 21 2 0 0 0 0.902 1.000 0.913

band: 1–10 kHz; sep: 0.005 s DB7_43357.58119484_9_14_16_8_39.wav 18 18 0 1 0 0 0.882 0.947 1.000

band: 1–10 kHz; sep: 0.005 s DG124DB_43559.30160960_4_4_8_22_40.wav 39 29 10 0 0 0 0.815 1.000 0.744

band: 1–10 kHz; sep: 0.005 s GRY37HP_43442.27431670_12_8_7_37_11.wav 54 45 9 9 0 0 0.875 0.833 0.833

band: 1–10 kHz; sep: 0.005 s Gold183_43555.5549813_3_31_1_32_29.wav 2 2 0 0 0 0 0.827 1.000 1.000

band: 1–10 kHz; sep: 0.005 s Gry35HP_43455.29800260_12_21_8_16_40.wav 18 15 3 11 0 0 0.819 0.577 0.833

Diagnostics from routines utilizing different tuning parameters 
serve to identify the parameter values that optimize detection. This 
process of evaluating different routines for detection optimization 
is incorporated into the two signal detection approaches provided 
natively by ohun, which we depict in the following section. Note that 
the detection with Raven Pro does not necessarily reflect the best 
performance of this software and has been included only as an ex-
ample of evaluating detection from external sources rather than a 
direct comparison of performance between Raven Pro and ohun.

4  |  SIGNAL DETEC TION WITH ohu n

The package offers two methods for automated signal detection: 
template-based and energy-based detection. These methods are 
better suited for stereotyped or good signal-to-noise ratio sounds, 
respectively. If the target sounds do not fit these requirements, more 
elaborate methods (i.e machine/deep learning approaches) are war-
ranted (see Stowell, 2022 for a detailed review of available methods).

5  |  STUDY C A SES

5.1  |  Template detection on ultrasonic social calls 
of Spix's disc-winged bats

We recorded 30 individuals of Spix's disc-winged bats Thyroptera 
tricolor at Baru Biological Station in southwestern Costa Rica in 
January 2020. Bats were captured at their roosting sites (furled 
leaves of Zingiberaceae plants). Each bat was released in a large flight 
cage (9 × 4 × 3 m) for 5 min, and their ultrasonic inquiry calls were re-
corded using a condenser microphone (CM16, Avisoft Bioacoustics, 
Glienike/Nordbahn, Germany) through an Avisoft UltraSoundGate 
116Hm plugged into a laptop computer running Avisoft-Recorder 

software. Recordings were made at a sampling rate of 500 kHz and 
an amplitude resolution of 16 bits.

Recordings were manually annotated using Raven Pro 1.6 
(Charif et al., 2010). Annotations were created by visual inspection 

of spectrograms (a time window of 200 samples and 70% overlap), 
in which the start and end of sounds were determined by the lo-
cation of the continuous traces of power spectral entropy of the 
target sounds. A total of 644 calls were annotated (~21 calls per re-
cording) and were then imported into R using the package Rraven 
(Araya-Salas, 2020).

Inquiry calls of Spix's disc-winged bats are structurally stereo-
typed (Chaverri et al.,  2010). Most variation is found among indi-
viduals, although the basic form of a short, downward broadband 
frequency modulation is always shared (Figure 1, Araya-Salas et al., 
2020).

Template-based detection uses spectrographic cross-correlation 
to find sounds resembling an example target sounds (i.e template) 
across sound files. The method produces vectors of correlation val-
ues through time, in which a correlation threshold can be applied to 
separate detections from background noise. It is a useful approach 
when there are minimal structural differences in the target sounds 
(e.g. when signals are produced in a highly stereotyped manner: 
Balantic & Donovan,  2020; Knight et al.,  2017). We used this ap-
proach in ohun to detect inquiry calls. To do this, we tested the per-
formance of three acoustic templates on a training subset of five 
sound files. First, we used the function get_templates to find sev-
eral sounds representative of the variation in signal structure. This 
function measures several spectral features, which are summarized 
using Principal Component Analysis. The first two components are 
used to project the acoustic space. In this space, the function defines 
sub-spaces as equal-sized slices of a sphere centred at the centroid 
of the acoustic space. Templates are then selected as those closer to 
the centroid within sub-spaces, including the centroid for the entire 
acoustic space. The user needs to define the number of sub-spaces 
in which the acoustic space will be split (argument ‘n.sub.spaces’):

# path to files directory
path_bats <- "path_to_bat__files"
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 # read manual annotations
manual_ref_thy <- read.csv(file.path(path_bats, "manual_annota-
tions_thyroptera.csv"))
# get random subset of 5 sound files for training

set.seed(1) # use seed to allow replication
train_files <- sample(unique(manual_ref_thy$sound.files), size = 5) 
train_ref <- manual_ref_thy[manual_ref_thy$sound.files %in% train_
files, ]

# use the rest of the data for testing
test_files <- setdiff(manual_ref_thy$sound.files, train_files)
test_ref <- manual_ref_thy[manual_ref_thy$sound.files %in% test_
files, ]

# find templates
templates <- get_templates(

 reference = train_ref, # data frame with reference annotations
 path = path_bats, # sound file directory
 bp = c(10, 50), # bandpass filter (kHz)
 ovlp = 70, # overlap between spectrogram time windows (%)
 hop.size = 10, # size of the spectrogram time window (in ms)
 n.sub.spaces = 3 # number of sub-spaces 
 )

This method might perform better on acoustic spaces in which 
sounds are homogeneously distributed, as templates might repre-
sent similar portions of the overall population of sounds in the data. 
However, it can still be useful for identifying structurally diverse 
templates in irregularly distributed acoustic spaces. The output of 
the get_templates function includes an acoustic space plot (Figure 2) 

in which the position of the sounds selected as templates is high-
lighted. Users can also provide their own acoustic space dimensions 
(argument ‘acoustic.space’), which allows users to customize the 
acoustic space by specifying the features used for projecting it. In 
the following code, we used the templates determined above for 

F I G U R E  1  Example spectrograms of Spix's disc-winged bats social calls for each of the 30 recordings used in the analysis. The highest 
signal-to-noise ratio call by sound file are shown. The time scale range is 71 ms and the frequency range 10–44 kHz.

F I G U R E  2  Acoustic space defined as the first two components 
of a Principal Component Analysis on spectrographic parameters. 
Templates are selected as those closer to the centroid within sub-
spaces. Grey dashed lines delimit the region of sub-spaces. Yellow 
circles around points highlight the position of the signals selected 
as templates.
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detecting bat social calls. The code iterates a template-based detec-
tion on the training data set across a range of correlation thresholds 
for each template, in order to find the combination of threshold and 
template with the best performance:

# get correlation vectors
corr_templ_train <- template_correlator(

 templates = templates, # data frame with annotations to be 
used as templates
 path = path_bats, # sound file directory
 files = unique(train_ref$sound.files), # set of files in which to 
run correlation
 hop.size = 10, # size of the spectrogram time window (ms)
 ovlp = 70 # overlap between spectrogram time windows (%)
 )

# evaluate detection for different correlation thresholdsopt_detec_train 
<- optimize_template_detector(

 reference = train_ref, # data frame with reference annota-
tions template.correlations = corr_templ_train, # output from 
template_correlator()
 threshold = seq(0.05, 0.5, 0.01) # correlation treshold values to 
evaluate
 )

Note that the correlation vectors are estimated first (i.e vectors 
of correlation values across sound files, template_correlator), and 
then the correlation thresholds are optimized on these vectors (op-
timize_template_detector). The output of optimize_template_detec-
tor contains the detection performance indices for each combination 
of templates and thresholds. Table 1 shows the two highest perfor-
mance runs (identified as the highest F score) for each template.

We can explore the performance of each template in more detail 
by looking at the change in F score across thresholds (Figure 3).

In this example, the “centroid” template produced the best perfor-
mance (although not drastically different from other templates; Table 1; 

TA B L E  1  Performance diagnostics of template-based detections using four templates across several threshold values. Only the two 
highest performance iterations for each template are shown.

threshold templates true.positives false.positives false.negatives recall precision f.score

0.45 centroid 75 1 6 0.926 0.987 0.955

0.50 centroid 74 0 7 0.914 1.000 0.955

0.50 templ-1 71 1 10 0.877 0.986 0.928

0.45 templ-1 74 5 7 0.914 0.937 0.925

0.40 templ-2 73 0 8 0.901 1.000 0.948

0.35 templ-2 74 2 7 0.914 0.974 0.943

0.45 templ-3 66 7 15 0.815 0.904 0.857

0.40 templ-3 68 10 13 0.840 0.872 0.855

Figure 3). Hence, we will use this template for detecting calls on the rest 
of the data. The following code extracts this template from the reference 
annotation table and uses it to find inquiry calls on the testing data set:

# get correlation vectors for test files
corr_templ_test <- template_correlator(

templates = templates[templates$template == "centroid", ], # 
template annotation 
path = path_bats, # sound file directory
 files = unique(test_ref$sound.files), # set of files in which to run 
correlation
 hop.size = 10, # size of the spectrogram time window (ms)
 ovlp = 70 # overlap between spectrogram time windows (%)
 )

# detect on test filesdetec_test <- template_detector(
 template.correlations = corr_templ_test, # output from 
template_correlator()
 threshold = 0.45 # correlation threshold
 )

diagnose_detection(
 reference = test_ref, # data frame with reference annotations
 detection = detec_test # detection data frame to be diagnosed
 )

detections true.positives false.positives false.negatives splits merges overlap recall precision f.score

532 522 10 41 0 14 0.835 0.927 0.981 0.953

The last line of code evaluates the detection on the test data 
set, which shows a good performance for both recall and precision 
(0.93 and 0.98 respectively). An alternative to this approach would 
be to run detections using all templates and then generate a con-
sensus table. This last step can be done using the function consen-
sus_detection, which combines detections from several templates 
and, when several templates match the same reference sound, 
only the template with the highest correlation score is kept. This 
method can improve detection performance, but note that it will 
also increase computational time.
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5.2  |  Energy-based detection on zebra finch 
vocalizations

This method applies a threshold to amplitude envelopes to infer 
the temporal position of sound events. We used recordings from 
18 zebra finch males recorded at the Rockefeller University Field 
Research Center Song Library (http://ofer.sci.ccny.cuny.edu/songs, 
Tchernichovski et al., 2021). Recordings contain undirected vocali-
zations (e.g. songs or calls) of single males recorded in sound attenu-
ation chambers using Sound Analysis Pro. Zebra finch vocalizations 
are composed of multiple elements (i.e distinct patterns of continu-
ous traces of power spectral entropy in the spectrogram separated 
by time gaps) that can vary substantially in key features such as du-
ration and frequency range (Figure 4) and are not nearly as stereo-
typed as the Spix's disc-winged bats'. However, as recorded sounds 
show a good signal-to-noise ratio, signals in each recording can po-
tentially be detected using an energy-based approach that does not 
rely on matching the acoustic structure of a template.

Reference annotations were made manually on the oscillogram 
with the spectrogram and audio as a guide using Raven Lite 2.0.1 
(Cornell Lab of Ornithology). The following code loads the reference 
annotations and split them into two data sets for training (3 sound 
files) and testing (15 sound files):

set.seed(450) # use seed to allow replication
train_files <- sample(unique(manual_ref_tae$sound.files), 3) # get 
subsample of files for training
test_files <- setdiff(manual_ref_tae$sound.files, train_files) # keep the 
rest of files for testing 

# subset data
train_ref <- manual_ref_tae[manual_ref_tae$sound.files %in% train_files, ] 
test_ref <- manual_ref_tae[manual_ref_tae$sound.files %in% test_files, ]

The detection parameters can be optimized using the function 
optimize_energy_detector. This function runs a detection for all 
possible combinations of tuning parameters. Several values for each 
tuning parameter can be evaluated in a single run. The following 
code tries three minimum duration and maximum duration values 
and two hold time values:

opt_det_train <- optimize_energy_detector(
 reference = train_ref, # annotation data frame 
files = train_files, # sound files on which to optimize  
detection
 threshold = c(1, 5), # amplitude threshold (in %)
 hop.size = 11.6, # size of the spectrogram time window (ms)
 smooth = c(5, 10), # size (in ms) of the sliding window use for 
smoothing
 hold.time = c(0, 5), # time range in which to merge detections 
into a single one (ms)
 min.duration = c(5, 15, 25), # minimum duration of
 detections to keep (ms)
 max.duration = c(275, 300, 325), # maximum duration of detec-
tions to keep (ms)
 bp = c(0.5, 10), # bandpass filter (kHz),
 path = path_zebra_finch
 )

The output (opt_det_train) shows the performance indices for 
each of those combinations. Here, we show the 10 combinations 
with the highest F score:

# subset with highest performance
opt_det_train <- opt_det_train[order(opt_det_train$f.score, decreas-
ing = TRUE), ]
head(opt_det_train, 10)

F I G U R E  3  Changes in F score across 
the range of cross-correlation threshold 
values for four sound templates.
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We can now use the tuning parameter values that yielded the 
best performance to detect sounds on the test dataset:

# keep only the highest f.score
best_param <- opt_det_train[which.max(opt_det_train$f.score), ]

threshold smooth hold.time min.duration max.duration true.positives false.positives false.negatives recall precision f.score

1 5 0 25 300 89 19 16 0.848 0.824 0.836

1 5 0 25 325 89 19 16 0.848 0.824 0.836

1 5 5 25 300 86 16 19 0.819 0.843 0.831

1 5 5 25 325 86 16 19 0.819 0.843 0.831

1 5 5 15 300 86 22 19 0.819 0.796 0.808

1 5 5 15 325 86 22 19 0.819 0.796 0.808

1 5 0 15 300 89 29 16 0.848 0.754 0.798

1 5 0 15 325 89 29 16 0.848 0.754 0.798

1 10 0 25 300 84 22 21 0.800 0.792 0.796

1 10 0 25 325 84 22 21 0.800 0.792 0.796

F I G U R E  4  Example spectrograms of male zebra finch songs for each of the 18 sound files used in the analysis. The highest signal-to-
noise ratio call by sound file are shown. The time scale range is 359 ms and the frequency range 0–11 kHz. Signals have been highlighted for 
visualization purposes only.

det_test <- energy_detector(
 files = test_files, # set of files in which to run detection
 threshold = best_param$threshold, # threshold from best  
detection
 hop.size = 11.6, # size of the spectrogram time window (ms)
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5.3  |  Additional tools and tips

The ohun package offers additional tools to simplify sound event de-
tection. Detected sounds can be labelled as false or true positives 
with the function ‘label_detection’. This allows users to explore the 
structure of false positives and figure out ways to exclude them. 
The function ‘consensus_detection’ can remove ambiguous sounds 
(i.e those labelled as split or merged detections), keeping only those 
that maximize a specific criterion (i.e the highest template correla-
tion). Finally, note that several templates representing the range of 
variation in signal structure can be used to detect semi-stereotyped 
sounds or stereotyped multi-element repertoires when running 
template-based detection (‘template_detection’ function).

Detection routines can take a long time when working with large 
amounts of acoustic data (e.g. long recordings or many files). These 
are some practices that can help make a sound event detection rou-
tines more time efficient. (1) Always test procedures on small data 
subsets. Make sure to obtain decent results on a small subset of re-
cordings before scaling up the analysis. (2) Run routines in parallel. 
Parallelization (i.e the ability to distribute tasks over several cores 

 smooth = best_param$smooth, # size (in ms) of the sliding 
window use for smoothing
 hold.time = best_param$hold.time, # size of the spectrogram 
time window (ms)
 min.duration = best_param$min.duration, # minimum duration 
of detections to keep (ms)
 max.duration = best_param$max.duration, # maximum duration 
of detections to keep (ms)
 bp = c(0.5, 10), # bandpass filter (kHz)
 path = path_zebra_finch
 )

As our reference annotations include all sounds in both the train-
ing and test annotations, we can evaluate the performance of the 
detection on the test set as well:

diagnose_detection(
 reference = test_ref, # data frame with reference annotations
 detection = det_test, # detection data frame to be diagnosed
 by.sound.file = FALSE # summarize across sound files
 )

The performance on the test data set was also acceptable, with 
an F score of 0.91. Note that in the example we used a small sub-
set of sound files for training. More training data might be needed 
for optimizing a detection routine on larger data sets or recordings 
with more variable sounds or background noise levels. Additional 
measures might be needed when working with unbalanced datasets. 
For instance, the function can use macro-averaging for summariz-
ing performance indices while giving equal weight to each sound file 
(Mesaros et al., 2016):

diagnose_detection(
 reference = test_ref, # data frame with reference annotations
 detection = det_test, # detection data frame to be diagnosed
 by.sound.file = FALSE, # summarize across sound files,
 macro.average = TRUE # calculates average of within sound file 
averages
 )

Stratified sampling that accounts for additional structure in the 
data (e.g. several individuals, populations, days) might also help to 
deal with unbalanced data and ensure similar performance on un-
seen data (see createDataPartition in the R package caret for creating 
stratified training samples).

detections true.positives false.positives false.negatives splits merges overlap recall precision f.score

505 452 53 34 0 0 0.924 0.93 0.895 0.912

Detections True.Positives False.Positives False.Negatives Splits Merges Overlap Recall Precision f.score

505 452 53 34 0 0 0.922 0.923 0.894 0.908

in your computer) can significantly speed up routines. All automatic 
detection and performance evaluation functions in ohun allow users 
to run analysis in parallel (see parallel argument in those functions). 
Hence, a computer with several cores can help improve efficiency. 
(3) Try using a computer with lots of RAM or a computer cluster 
for working on large amounts of data. (4) Sampling rate matters. 
Detecting sounds on low sampling rate files is faster, so we must 
avoid having Nyquist frequencies much higher than the highest fre-
quency of the target sounds. These tips are not restricted to ohun 
and can also be helpful to speed up routines in other software 
packages.

Other things should be considered when aiming to detect sound 
events automatically. When running energy-based detection rou-
tines, try to use your knowledge of the signal structure to deter-
mine the initial range of tuning parameters. This can be extremely 
helpful for narrowing down possible parameter values. As a general 
rule, if human observers have difficulty detecting where a target 

sound occurs in a sound file, detection algorithms will likely yield 
low detection performance. Lastly, ensure that the reference an-
notations contain all target sounds and only the target sounds. 
Otherwise, performance optimization can be misleading as the 
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performance of a given detection method cannot be better than 
the reference itself.

6  |  DISCUSSION

Here, we have shown how to evaluate the performance of sound 
event detection routines using the package ohun. The package can 
evaluate detection outputs imported from other software, as well as 
its own detection routines. The latter can be iterated over combina-
tions of tuning parameters to find those values that optimize detec-
tion. Although signal detection indices are commonly reported when 
presenting new automatic detection methods, to our knowledge, 
there is only one other performance-evaluating software developed 
in a free, open-source platform (sed_eval, Mesaros et al.,  2016). 
These two software packages can provide a common framework 
for evaluating sound event detection that can simplify comparing 
the performance of different tools and selecting those tools bet-
ter suited to a given research question and study system. The tools 
offered by ohun for diagnosing detection performance should not 
necessarily be limited to acoustic data. ohun can also be used for 
cases in which the time of occurrence of discrete events needs to be 
identified, such as detecting specific behaviours in video analysis of 
animal motor activity (e.g. Bohnslav et al., 2021; Hsu & Yttri, 2021; 
Sturman et al., 2020). The detection of such motor events in video 
recordings can also be evaluated and optimized compared to a refer-
ence annotation, as we have shown here for sound events.

The ohun package provides two detection methods: template-
based and energy-based detection. Compared to new deep learn-
ing approaches for finding the occurrence of sound events, the two 
native methods are relatively simple tools. However, these meth-
ods have been widely used by the bioacoustics community (Aide 
et al., 2013; Charif et al., 2010; Hafner & Katz, 2015; Mellinger & 
Clark,  2000; Specht,  2002) and can reach adequate performance 
under the appropriate conditions, as evidenced by our two study 
cases and from previous reports (Knight et al., 2017). Deep learn-
ing methods tend to require greater computational power, larger 
training data sets (Mesaros et al., 2021), and, in some cases, more 
complex training routines (e.g. data augmentation, but see transfer 
learning approaches). This might bring unnecessary difficulties when 
dealing with less challenging detection tasks. Therefore, the avail-
ability of a wide range of approaches can simplify finding the most 
appropriate tool for the intricacies of a study system and research 
goals as well as making tools accessible to a broader research com-
munity. The tools offered in ohun can also be used in a subsequent 
pipeline in which detected sounds are further classified and false 
positives are mitigated using more elaborated discrimination algo-
rithms (Balantic & Donovan, 2020). Detection performance might be 
improved by using acoustic structure measurements to distinguish 
target from non-target sound events.

The implementation of detection diagnostics that can be ap-
plied to both built in detection methods and to those obtained 
from other software packages makes the package ohun an useful 

tool for conducting direct comparisons of the performance of 
different routines. This feature enables users to precisely iden-
tify the detection approaches that better align with their specific 
needs. The package also offers a range of complementary func-
tions that allow users to inspect and format acoustic data sets, 
and extract structural features of sound events from training data 
sets in order to inform tuning parameter values for automatic de-
tection routines. Furthermore, ohun introduces new performance 
indices that are focused on the accuracy of temporal location in 
detected sound events. These indices can prove particularly useful 
in studies where further measurements need to be taken from the 
detected events. As sound event detection techniques continue 
to advance, these new indices can be instrumental for evaluating 
an additional performance dimension, temporal accuracy, which 
has remained relatively unexplored. Finally, the compatibility of 
‘ohun’ with data formats already used by other sound analysis R 
packages (e.g. seewave, warbleR) make possible the integration of 
‘ohun’ into more complex acoustic analysis workflows in a pop-
ular programming environment within the research community. 
We expect these contributions to make automatic sound event 
detection more accessible to the wider audience in the scientific 
community, facilitating the implementation of automated detec-
tion routines in bioacoustics research.
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